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8 
The topic of C-heteroatom bond-rotation has received considerable attention, particularly 

that of hindered rotation in amides. 1,2 We now report, via 
13 

C NMR analysis, the first observation 

of hindered rotation in triaroylphosphines (Ia c-+ Ib) and the determination of the barrier 

(AG*) to C-P bond rotation in tribenzoylphosphine. Also we herein record the carbonyl and se- 

lected 
13 

C chemical shifts and 31P chemical shifts for five triaroylphospines (see Tables I and II). 

Table I. Carbonyl 
13 

C Chemical 

R 

Shiftsa (31P-13C Coupling Constants)b and 31P Chemical ShiftsC 

for R3P 

6 13C(1Jpc) 31P 

C6H5C (0) 205.54(33.4) 53.97 

3-CH3C6H4C(0) 

4-CH3C6H4C(0) 

l-CloH7C(0)d 

2-CloH7C(0) 
d 

205.80(33.2) 53.73 

204.99(33.1) 53.22 

208.01(34.3) 67.88 

205.54(33.2) 53.47 

a In ppm (+O.Ol) downfield from internal TMS. Samples 

857 

were 200 mg in 2 ml DCC13. 
b 

In hertz 



858 No. 10 

(kO.4). ' In ppm (kO.01) downfield from external 85% H3P04. d 100 mg in 2 ml of 1,1,2,2- 

tetrachloroethane. 

The synthesis, chemical properties, infrared and ultraviolet spectral data of the triaroyl- 

phosphines examined here have been reported previously. 
3 

The magnitude of lJPC (33 Hz) for these 
compounds lies, for example, between that of 14 Hz for trimethylphosphine4 and 56 Hz for tetra- 

methylphosphonium iodide. 
4 

This suggests that the hybridization on phosphorus in the triaroyl- 

phosphines is between that of pure p 

Table II. Aromatic 13C Chemical 

3 
and sp . The l3 C chemical shifts for the aromatic carbons 

Shiftsa (and 31P-13C Coupling Constants)a for Substituted 

Benzoylphosphines. 

Carbon Atom 

1 139.97(35.0) 140.09(34.6) 137.84(34.8) 

2 128.57(10.0) 128.62(8.2)b 128.67(8.1) 

3 128.57(10.0) 138.62(s) 129.32(s) 

4 133.90(s) 138.67(s) 144.95(s) 

5 128.46(s) 

6 125.982(8.9)b 

7 21.24(s) 21.76(s) 

a See Table I. 
b 

May be interchanged. 

in benzoylphosphines are listed in Table II. The assignments were made based on the observed 
31 13 

P- C coupling constants and 
13 

C chemical shifts for related compounds. Due to the extreme 

complexity of the 
13 

C spectra for the naphthoylphosphines, only the carbonyl carbon (Table I) and 

the alpha carbon attached thereto were readily apparent and have been reported here [alpha 13C 

resonances: 1-naphthoyl 137.17 ppm (32.2 Hz) and 2-naphthoyl 137.22 ppm (35.1 Hz)]. The magnitude 

of the 
2 
Jpc value (35 Hz) for the phenyl carbon attached to the C=O group was quite interesting 

In all but one case [(tri-1-naphthoylphosphine)] was the magnitude of 
2 

lJPC 

Jpc (35 Hz) larger than 

that of average (33 Hz). This observation may be considered consistent with the P lone-pair 

delocalization into the carbonyl group resulting in r orbital overlap between the phenyl group 

and phosphorus. 
5 

Similarly, the 
31 

P chemical shift (ca. +53 ppm, - downfield from 85% H4P04) for the triaroyl- 

phosphines is probably indicative of delocalization of the electron pair on phosphorus into the 

C=O group (this is supported by vcco appearing at longer wavelengths in the Ir spectra compared 

to that in aldehydes and ketones). 3 Many phosphines exhibit a negative 
31 

P shift from 85% H3P04. 

Also, the inability of these phosphines to undergo quaternization contributes to the supposition 



of phosphorus lone-pair delocalization. 
3 

The unusually large 31 P shift of 67.88 ppm for tri-l- 

naphthoylphosphine reflects extreme crowding around phosphorus with deformation of the pyramidal 

configuration compared to that in phosphines with non-bulky groups. 
6 

In support of this was the 

observation of a 
31 

P chemical shift of +61.9 ppm for tri-tert-butylphosphine compared to that of 

+19.4 ppm for tri-2-propylphosphine. 
6 

Cooling solutions (D2CC12) of the substituted benzoylphosphines resulted in the appearance 

of a second doublet for a carbonyl carbon in the 13C spectrum (see Table III). From these data, 

Table III. Carbonyl 
13 

C Chemical Shiftsa (31P-13C Coupling Constants)b for R3P. 

R T(='C) 6 13&,,) 

C6H5C(0) -80 206.97(32.5) 199.85(57.4) 

3-CH3C6H4C(0) -70 207.25(32.1) 200.12(57.3) 

4-CH3C6H4C(0) -70 206.28(31.8) 100.24(57.7) 

a In ppm (+O.Ol) downfield from internal TMS. Samples were 200 mg in 2 ml of D2CC12. 
b 

See 

Table I. 

a value of 15 kcal/mole' was obtained for the barrier (AG*) to C-P bond rotation. This value for 

AG* is somewhat lower than AG* for a variety of amides 132 and is likely, in part, due to the 

increased C-P bond length compared to C-N* and the larger size of P vs N. 
8 

We suggest, that when C-P bond rotation is slow, only one carbonyl carbon can interact with 

the phosphorus atom to produce a second shielded carbonyl 
13 

C signal (interaction via overlap of 

parallel IT orbitals on C=O with the lone-pair of electrons on P). This assumption is borne out 

by the observation that, at low temperature, the relative ratio of the downfield 
13 

C carbonyl 

signal to the upfield signal is about 2:l. 

That the process under investigation here is C-P bond rotation and not pyramidal inversion 

at phosphorus is reasonably defended since inversion cannot account for two 
13 

C signals in 

these symmetrical molecules. This argument does not rule out the possibility of inversion at 

phosphorus proceeding at a faster rate than C-P rotation but this seems unlikely. 
9 

However 

no suitable "marker signal" is present in these systems to determine whether inversion is 

occurring. 
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